10. Combinatorics

Po-Shen Loh

CMU Putnam Seminar, Fall 2020

1 Classical results

Erdős-Ko-Rado. Let \mathcal{F} be a family of k-element subsets of $\{1,2, \ldots, n\}$, with the property that every pair of members of \mathcal{F} has nonempty intersection, and $n \geq 2 k$. Then the size of \mathcal{F} is at most $\binom{n-1}{k-1}$.

Lucas. Let n and k be non-negative integers, with base- p expansions $n=\left(n_{t} n_{t-1} \ldots n_{0}\right)_{(p)}$ and $k=$ $\left(k_{t} k_{t-1} \ldots k_{0}\right)_{(p)}$, respectively. Then

$$
\binom{n}{k} \equiv\binom{n_{t}}{k_{t}} \times\binom{ n_{t-1}}{k_{t-1}} \times \cdots \times\binom{ n_{0}}{k_{0}} \quad(\bmod p)
$$

2 Problems

1. Let X be a subset of $\{1,2,3, \ldots, 2 n\}$ with $n+1$ elements. Show that we can find $a, b \in X$ with a dividing b.
2. Given any five points in the interior of a square side 1 , show that two of the points are a distance apart less than $k=\frac{1}{\sqrt{2}}$. Is this result true for a smaller k ?
3. Let S be a finite set, and suppose that a collection \mathcal{F} of subsets of S has the property that any two members of \mathcal{F} have at least one element in common, but \mathcal{F} cannot be extended (while keeping this property). Prove that \mathcal{F} contains just half of the subsets of S.
4. Show that the number of ways of representing n as an ordered sum of 1 's and 2 's equals the number of ways of representing $n+2$ as an ordered sum of integers greater than 1 . For example: $4=1+1+1+1=$ $2+2=2+1+1=1+2+1=1+1+2$ (5 ways) and $6=4+2=2+4=3+3=2+2+2$ (5 ways).
5. Show that for any given positive integer n, the number of odd $\binom{n}{m}$ with $0 \leq m \leq n$ is a power of 2 .
6. A graph has n vertices $\{1,2, \ldots, n\}$ and a complete set of edges. Each edge is oriented, as either $i \rightarrow j$ or $j \rightarrow i$. Show that we can find a permutation of the vertices a_{i} so that $a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow \cdots \rightarrow a_{n}$.
7. Let $a_{1}, a_{2}, \ldots, a_{n}$ be a permutation of the integers $1, \ldots, n$. Call a_{i} a "big" integer if $a_{i}>a_{j}$ for all $j>i$. Find the mean number of "big" integers over all permutations on the first n integers.
8. In a tournament of n players, every pair of players plays once. There are no draws. Player i wins w_{i} games and loses l_{i} games. Which of these is always true?
(a) $\sum w_{i}=\sum l_{i}$
(b) $\sum w_{i}^{2}=\sum l_{i}^{2}$
(c) $\sum w_{i}^{3}=\sum l_{i}^{3}$
9. In a tournament of n players, every pair of players plays once. There are no draws. Player i wins w_{i} games. Prove that we can find three players i, j, k such that i beats j, j beats k and k beats i iff $\sum_{t=1}^{n} w_{t}^{2}<\frac{(n-1) n(2 n-1)}{6}$.
10. Let n be a positive integer. Suppose we have an infinite sequence of 0 's and 1 's is such that it only contains at most n different blocks of n consecutive terms. Show that it is eventually periodic.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

