8. Recursions

Po-Shen Loh

CMU Putnam Seminar, Fall 2020

1 Classical results

Classical. Prove that the sequence $\sqrt{7}$, $\sqrt{7+\sqrt{7}}$, $\sqrt{7+\sqrt{7}+\sqrt{7}}$, ... converges, and determine its limit. This is often denoted as $\sqrt{7+\sqrt{7+\sqrt{7}+\cdots}}$.

2 Problems

- 1. Let a_1, a_2, \ldots be a sequence of real numbers which satisfies $a_{n+1} = \frac{1}{2-a_n}$. Prove that $\lim_{n\to\infty} a_n = 1$.
- 2. Let α be an arbitrary real number. Define $a_1 = \alpha$, and for all $n \ge 1$, let $a_{n+1} = \cos a_n$. Prove that a_n converges to a limit, and that this limit does not depend on α .
- 3. Let t_1, t_2, \ldots be a sequence of positive numbers such that $t_1 = 1$ and $t_{n+1}^2 = 1 + t_n$, for $n \ge 1$. Show that t_n is increasing in n and find $\lim_{n \to \infty} t_n$.
- 4. Prove that the sequence $\sqrt{7}$, $\sqrt{7-\sqrt{7}}$, $\sqrt{7-\sqrt{7+\sqrt{7}}}$, $\sqrt{7-\sqrt{7+\sqrt{7}-\sqrt{7}}}$, ..., converges, and determine its limit.
- 5. The sequence a_n is defined by $a_1 = 2$, $a_{n+1} = a_n^2 a_n + 1$. Show that any pair of values in the sequence are relatively prime and that $\sum \frac{1}{a_n} = 1$.
- 6. Define $a_1 = 1$, and let $a_{n+1} = 1 + \frac{n}{a_n}$ for all n. Show that $\sqrt{n} \le a_n < 1 + \sqrt{n}$.
- 7. Let a_i be a sequence of positive real numbers. Show that $\limsup \left(\frac{a_1+a_{n+1}}{a_n}\right)^n \geq e$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.