8. Recursions

Po-Shen Loh

CMU Putnam Seminar, Fall 2020

1 Classical results

Classical. Prove that the sequence $\sqrt{7}, \sqrt{7+\sqrt{7}}, \sqrt{7+\sqrt{7+\sqrt{7}}}, \ldots$ converges, and determine its limit. This is often denoted as $\sqrt{7+\sqrt{7+\sqrt{7+\cdots}}}$.

2 Problems

1. Let a_{1}, a_{2}, \ldots be a sequence of real numbers which satisfies $a_{n+1}=\frac{1}{2-a_{n}}$. Prove that $\lim _{n \rightarrow \infty} a_{n}=1$.
2. Let α be an arbitrary real number. Define $a_{1}=\alpha$, and for all $n \geq 1$, let $a_{n+1}=\cos a_{n}$. Prove that a_{n} converges to a limit, and that this limit does not depend on α.
3. Let t_{1}, t_{2}, \ldots be a sequence of positive numbers such that $t_{1}=1$ and $t_{n+1}^{2}=1+t_{n}$, for $n \geq 1$. Show that t_{n} is increasing in n and find $\lim _{n \rightarrow \infty} t_{n}$.
4. Prove that the sequence $\sqrt{7}, \sqrt{7-\sqrt{7}}, \sqrt{7-\sqrt{7+\sqrt{7}}}, \sqrt{7-\sqrt{7+\sqrt{7-\sqrt{7}}}}, \ldots$, converges, and determine its limit.
5. The sequence a_{n} is defined by $a_{1}=2, a_{n+1}=a_{n}^{2}-a_{n}+1$. Show that any pair of values in the sequence are relatively prime and that $\sum \frac{1}{a_{n}}=1$.
6. Define $a_{1}=1$, and let $a_{n+1}=1+\frac{n}{a_{n}}$ for all n. Show that $\sqrt{n} \leq a_{n}<1+\sqrt{n}$.
7. Let a_{i} be a sequence of positive real numbers. Show that $\lim \sup \left(\frac{a_{1}+a_{n+1}}{a_{n}}\right)^{n} \geq e$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

