6. Inequalities

Po-Shen Loh

CMU Putnam Seminar, Fall 2020

1 Classical results

Smoothing principle. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function. Then if x + y = x' + y' but x' and y' are closer together, we have

 $f(x') + f(y') \le f(x) + f(y)$.

Furthermore, if f is strictly convex, then the inequality is strict.

Jensen. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function. Then for any $a_1, a_2, \ldots, a_n \in \mathbb{R}$,

$$f\left(\frac{a_1+\dots+a_n}{n}\right) \le \frac{f(a_1)+\dots+f(a_n)}{n}$$

Compactness. If D is a compact set and $f: D \to \mathbb{R}$ is continuous, then f achieves a maximum on D, i.e., there is at point $x \in D$ such that for all $y \in D$, $f(x) \ge f(y)$.

AM-GM. Let a_1, a_2, \ldots, a_n be non-negative real numbers. Then

$$(a_1a_2\cdots a_n)^{1/n} \leq \frac{a_1+\cdots+a_n}{n},$$

with equality if and only if all a_i are equal.

Cauchy-Schwarz. Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be real numbers. Then

$$\left(\sum_{i} a_{i} b_{i}\right)^{2} \leq \left(\sum_{i} a_{i}^{2}\right) \left(\sum_{i} b_{i}^{2}\right) ,$$

with equality only if the sequences (a_1, \ldots, a_n) and (b_1, \ldots, b_n) are proportional.

Dirichlet approximation. For any real number r and any positive integer N, there are integers a and b with $1 \le b \le N$ which satisfy

$$\left|r - \frac{a}{b}\right| < \frac{1}{b^2} \,.$$

2 Problems

- 1. Let P_1, P_2, \ldots, P_n be points on a line, not necessarily distinct. Which points P on the line minimize the sum of distances $\sum_i |PP_i|$?
- 2. Prove that for all positive real numbers a, b, c, the following holds:

$$\frac{9}{a+b+c} \leq 2\left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a}\right) \,.$$

- 3. Given n > 8, let $a = \sqrt{n}$ and $b = \sqrt{n+1}$. Which is greater, a^b or b^a ?
- 4. Show that $\log(1 + \frac{1}{x}) > \frac{1}{1+x}$ for x > 0.
- 5. Let p(x) be a real polynomial of degree at most 2, which satisfies $|p(x)| \le 1$ for all $-1 \le x \le 1$. Show that $|p'(x)| \le 4$ for all $-1 \le x \le 1$.
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function satisfying f(0) = 0 and $|f'(x)| \le |f(x)|$ for all $x \in \mathbb{R}$. Show that f is constant.
- 7. Let C be a closed plane curve with the property that every pair of points in C are at distance at most 1 apart. Show that we can find a disk of radius $\frac{1}{\sqrt{3}}$ which contains C.
- 8. Let O be the origin (0,0), and let C be the line segment $\{(x,y) : x \in [1,3], y = 1\}$. Let K be the curve $\{P : \text{for some } Q \in C, P \text{ lies on } OQ \text{ and } PQ = 0.01\}$. Let k be the length of the curve K. Is k greater or less than 2?
- 9. Show that for any rational $0 < \frac{a}{b} < 1$, we have $\left| \frac{a}{b} \frac{1}{\sqrt{2}} \right| > \frac{1}{4b^2}$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.