6. Inequalities

Po-Shen Loh

CMU Putnam Seminar, Fall 2020

1 Classical results

Smoothing principle. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Then if $x+y=x^{\prime}+y^{\prime}$ but x^{\prime} and y^{\prime} are closer together, we have

$$
f\left(x^{\prime}\right)+f\left(y^{\prime}\right) \leq f(x)+f(y) .
$$

Furthermore, if f is strictly convex, then the inequality is strict.
Jensen. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Then for any $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$,

$$
f\left(\frac{a_{1}+\cdots+a_{n}}{n}\right) \leq \frac{f\left(a_{1}\right)+\cdots+f\left(a_{n}\right)}{n} .
$$

Compactness. If D is a compact set and $f: D \rightarrow \mathbb{R}$ is continuous, then f achieves a maximum on D, i.e., there is at point $x \in D$ such that for all $y \in D, f(x) \geq f(y)$.

AM-GM. Let $a_{1}, a_{2}, \ldots, a_{n}$ be non-negative real numbers. Then

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{a_{1}+\cdots+a_{n}}{n}
$$

with equality if and only if all a_{i} are equal.
Cauchy-Schwarz. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be real numbers. Then

$$
\left(\sum_{i} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i} a_{i}^{2}\right)\left(\sum_{i} b_{i}^{2}\right)
$$

with equality only if the sequences $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ are proportional.
Dirichlet approximation. For any real number r and any positive integer N, there are integers a and b with $1 \leq b \leq N$ which satisfy

$$
\left|r-\frac{a}{b}\right|<\frac{1}{b^{2}} .
$$

2 Problems

1. Let $P_{1}, P_{2}, \ldots, P_{n}$ be points on a line, not necessarily distinct. Which points P on the line minimize the sum of distances $\sum_{i}\left|P P_{i}\right|$?
2. Prove that for all positive real numbers a, b, c, the following holds:

$$
\frac{9}{a+b+c} \leq 2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)
$$

3. Given $n>8$, let $a=\sqrt{n}$ and $b=\sqrt{n+1}$. Which is greater, a^{b} or b^{a} ?
4. Show that $\log \left(1+\frac{1}{x}\right)>\frac{1}{1+x}$ for $x>0$.
5. Let $p(x)$ be a real polynomial of degree at most 2 , which satisfies $|p(x)| \leq 1$ for all $-1 \leq x \leq 1$. Show that $\left|p^{\prime}(x)\right| \leq 4$ for all $-1 \leq x \leq 1$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function satisfying $f(0)=0$ and $\left|f^{\prime}(x)\right| \leq|f(x)|$ for all $x \in \mathbb{R}$. Show that f is constant.
7. Let C be a closed plane curve with the property that every pair of points in C are at distance at most 1 apart. Show that we can find a disk of radius $\frac{1}{\sqrt{3}}$ which contains C.
8. Let O be the origin $(0,0)$, and let C be the line segment $\{(x, y): x \in[1,3], y=1\}$. Let K be the curve $\{P$: for some $Q \in C, P$ lies on $O Q$ and $P Q=0.01\}$. Let k be the length of the curve K. Is k greater or less than 2 ?
9. Show that for any rational $0<\frac{a}{b}<1$, we have $\left|\frac{a}{b}-\frac{1}{\sqrt{2}}\right|>\frac{1}{4 b^{2}}$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

