5. Functional equations

Po-Shen Loh

CMU Putnam Seminar, Fall 2020

1 Classical results

Cauchy. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function that satisfies f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Show that there must be a real number c such that f(x) = cx for all $x \in \mathbb{R}$.

Parallelogram Law. In a normed space, for every x and y:

$$2||x||^{2} + 2||y||^{2} = ||x + y||^{2} + ||x - y||^{2}.$$

Group theory. Let f(x, y) be a function from $\{1, \ldots, 29\}^2 \to \{1, \ldots, 29\}$, which satisfies f(f(x, y), z) = f(x, f(y, z)) for all $x, y, z \in \{1, \ldots, 29\}$. Suppose that there is an integer $a \in \{1, \ldots, 29\}$ such that for every integer $x \in \{1, \ldots, 29\}$, we have f(x, a) = x and f(a, x) = x. Also suppose that for every integer $x \in \{1, \ldots, 29\}$, there is an integer $y \in \{1, \ldots, 29\}$ such that f(x, y) = a and f(y, x) = a. Prove that for every integers $x, y \in \{1, \ldots, 29\}$, we must have f(x, y) = f(y, x).

2 Problems

1. Determine all continuous functions from $\mathbb{R} \to \mathbb{R}$ which satisfy

$$f(x+y) + f(x-y) = 2[f(x) + f(y)]$$

for all $x, y \in \mathbb{R}$.

2. Determine all continuous functions from $\mathbb{R}^+ \to \mathbb{R}$ which satisfy

$$f(xy) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}^+$. Here, the set \mathbb{R}^+ represents all positive real numbers.

3. Determine all continuous functions from $\mathbb{R}^+ \to \mathbb{R}$ which satisfy

$$f(xy) = f(x)f(y)$$

for all $x, y \in \mathbb{R}^+$. Here, the set \mathbb{R}^+ represents all positive real numbers.

- 4. Let $f : \mathbb{C} \to \mathbb{C}$ be a continuous function which satisfies f(z) + zf(1-z) = 1+z for all $z \in \mathbb{C}$. Determine all possible such functions f.
- 5. Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$:

$$f(1-x) = 1 - f(f(x)).$$

- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function which satisfies $f(\sqrt{x^2 + y^2}) = f(x)f(y)$ for all real x and y. Show that $f(x) = f(1)^{x^2}$.
- 7. Find all surjective functions $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ such that $f(n) \ge n + (-1)^n$ for all $n \in \mathbb{Z}^+$.
- 8. Let c > 0 be a constant. Give a complete description, with proof, of the set of all continuous functions $f: R \to R$ such that $f(x) = f(x^2 + c)$ for all $x \in R$. Note that R denotes the set of real numbers.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.