5. Functional equations

Po-Shen Loh

CMU Putnam Seminar, Fall 2020

1 Classical results

Cauchy. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function that satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Show that there must be a real number c such that $f(x)=c x$ for all $x \in \mathbb{R}$.

Parallelogram Law. In a normed space, for every x and y :

$$
2\|x\|^{2}+2\|y\|^{2}=\|x+y\|^{2}+\|x-y\|^{2}
$$

Group theory. Let $f(x, y)$ be a function from $\{1, \ldots, 29\}^{2} \rightarrow\{1, \ldots, 29\}$, which satisfies $f(f(x, y), z)=$ $f(x, f(y, z))$ for all $x, y, z \in\{1, \ldots, 29\}$. Suppose that there is an integer $a \in\{1, \ldots, 29\}$ such that for every integer $x \in\{1, \ldots, 29\}$, we have $f(x, a)=x$ and $f(a, x)=x$. Also suppose that for every integer $x \in\{1, \ldots, 29\}$, there is an integer $y \in\{1, \ldots, 29\}$ such that $f(x, y)=a$ and $f(y, x)=a$. Prove that for every integers $x, y \in\{1, \ldots, 29\}$, we must have $f(x, y)=f(y, x)$.

2 Problems

1. Determine all continuous functions from $\mathbb{R} \rightarrow \mathbb{R}$ which satisfy

$$
f(x+y)+f(x-y)=2[f(x)+f(y)]
$$

for all $x, y \in \mathbb{R}$.
2. Determine all continuous functions from $\mathbb{R}^{+} \rightarrow \mathbb{R}$ which satisfy

$$
f(x y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}^{+}$. Here, the set \mathbb{R}^{+}represents all positive real numbers.
3. Determine all continuous functions from $\mathbb{R}^{+} \rightarrow \mathbb{R}$ which satisfy

$$
f(x y)=f(x) f(y)
$$

for all $x, y \in \mathbb{R}^{+}$. Here, the set \mathbb{R}^{+}represents all positive real numbers.
4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a continuous function which satisfies $f(z)+z f(1-z)=1+z$ for all $z \in \mathbb{C}$. Determine all possible such functions f.
5. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$:

$$
f(1-x)=1-f(f(x))
$$

6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which satisfies $f\left(\sqrt{x^{2}+y^{2}}\right)=f(x) f(y)$ for all real x and y. Show that $f(x)=f(1)^{x^{2}}$.
7. Find all surjective functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that $f(n) \geq n+(-1)^{n}$ for all $n \in \mathbb{Z}^{+}$.
8. Let $c>0$ be a constant. Give a complete description, with proof, of the set of all continuous functions $f: R \rightarrow R$ such that $f(x)=f\left(x^{2}+c\right)$ for all $x \in R$. Note that R denotes the set of real numbers.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

