4. Calculus

Po-Shen Loh

CMU Putnam Seminar, Fall 2020

1 Classical results

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be a monotone increasing function, and let $g:[0,1] \rightarrow \mathbb{R}$ be a monotone decreasing function. Show that $\int_{0}^{1} f(x) g(x) d x \leq \int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x$, i.e., that the expected value of the product of two negatively correlated random variables is at most the product of their expected values.

2 Problems

1. Given functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, and $x \in \mathbb{R}$, let $I(f g)$ denote the function which maps x to $\int_{1}^{x} f(t) g(t) d t$. Prove that whenever $a(x), b(x), c(x)$, and $d(x)$ are real polynomials, the polynomial

$$
I(a c) I(b d)-I(a d) I(b c)
$$

is divisible by $(x-1)^{4}$.
2. Let S be a spherical shell of radius 1, i.e., the set of points satisfying $x^{2}+y^{2}+z^{2}=1$. Find the average straight line distance between two points of S.
3. Let $p(x)$ be a real polynomial of degree at most 2 , which satisfies $|p(x)| \leq 1$ for all $-1 \leq x \leq 1$. Show that $\left|p^{\prime}(x)\right| \leq 4$ for all $-1 \leq x \leq 1$.
4. Let K be a positive real number, and let $f:[0,1] \rightarrow \mathbb{R}$ be a differentiable function whose derivative satisfies $\left|f^{\prime}(x)\right| \leq K$ for all $0 \leq x \leq 1$. Prove that

$$
\left|\int_{0}^{1} f(x) d x-\sum_{i=1}^{n} \frac{f(i / n)}{n}\right| \leq \frac{K}{n}
$$

5. Let $f:[0,1] \rightarrow \mathbb{R}^{+}$be a monotone decreasing continuous function. Show that

$$
\int_{0}^{1} f(x) d x \int_{0}^{1} x f(x)^{2} d x \leq \int_{0}^{1} x f(x) d x \int_{0}^{1} f(x)^{2} d x
$$

6. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function which satisfies $\int_{0}^{1} x^{n} f(x) d x=0$ for all non-negative integers n. Prove that f is the zero function.
7. Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a differentiable function which satisfies $f^{\prime}(x)=\frac{1}{x^{2}+f(x)^{2}}$ and $f(1)=1$. Show that as $x \rightarrow \infty, f(x)$ tends to a limit which is less than $1+\frac{\pi}{4}$.
8. Show that there is at most one continuous function $f:[0,1]^{2} \rightarrow \mathbb{R}$ satisfying $f(x, y)=1+\int_{0}^{x} \int_{0}^{y} f(s, t) d t d s$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

