3. Number theory

Po-Shen Loh

CMU Putnam Seminar, Fall 2020

1 Classical results

1. $\sqrt{6}$ is irrational.
2. For any irrational number α, the fractional parts of its integer multiples are dense in $[0,1)$. That means that for any $\epsilon>0$ and any real number $0 \leq r<1$, there is an integer z so that the fractional part $\{z \alpha\}=z \alpha-\lfloor z \alpha\rfloor$ is within ϵ of r. The same is not true when α is rational.
3. It is still an open question to determine whether $e+\pi$ is rational. It is also still open to determine whether $e \cdot \pi$ is rational. However, it is known that at least one of them is irrational.
4. Find all integer solutions to the equation $\frac{2}{x}+\frac{8}{y}=1$.

2 Problems

1. Prove that if a, b, c are integers and $a \sqrt{2}+b \sqrt{3}+c=0$, then $a=b=c=0$.
2. Find all integral x and y satisfying the equation $2 \sqrt{6}+5 \sqrt{10}=\sqrt{x}+\sqrt{y}$.
3. Welcome to the 2016-2017 school year! A brand new school has installed exactly 2017 lockers, numbered from 1 to 2017 , running side by side all the way around its perimeter so that locker $\# 2017$ is right next to locker $\# 1$. After checking the lockers, all of the odd numbered ones were left open, and all of the even numbered ones were shut.
A prankster starts at locker $\# 1$, and flips its state from open to shut. He then moves one locker to the left (to $\# 2017$), and flips its state from open to shut. He then moves three more lockers to the left (to \#2014), and flips its state from shut to open. He then moves five more lockers to the left (to \#2009), and flips its state from open to shut. He keeps going in this way, until he has flipped a total of 2017 lockers.
How many lockers are open after he is finished?
4. Given any positive integer n, show that we can find a positive integer m such that $m n$ uses all ten digits when written in the usual base 10 .
5. Show that for any positive integer r, we can find integers m, n such that $m^{2}-n^{2}=r^{3}$.
6. Let n be a positive integer. Prove that $n(n+1)(n+2)(n+3)$ cannot be a square or a cube.
7. Prove that there are only finitely many cuboidal blocks with integer sides $a \times b \times c$, such that if the block is painted on the outside and then cut into unit cubes, exactly half the cubes have no face painted.
8. α and β are positive irrational numbers satisfying $1 / \alpha+1 / \beta=1$. Let $a_{n}=\lfloor n \alpha\rfloor$ and $b_{n}=\lfloor n \beta\rfloor$, for $n=1,2,3, \ldots$ Show that the sequences a_{n} and b_{n} are disjoint and that every positive integer belongs to one or the other.
9. If x is a positive rational, show that we can find distinct positive integers $a_{1}, a_{2}, \ldots, a_{n}$ such that $x=\sum 1 / a_{i}$.
10. Show that we can express any irrational number $0<\alpha<1$ uniquely in the form $\sum_{1}^{\infty}(-1)^{n+1} 1 /\left(a_{1} a_{2} \cdots a_{n}\right)$, where a_{i} is a strictly monotonic increasing sequence of positive integers. Find a_{1}, a_{2}, a_{3} for $\alpha=1 / \sqrt{2}$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

