2. Polynomials

Po-Shen Loh

CMU Putnam Seminar, Fall 2020

1 Classical results

1. Find a nice expression for the derivative of the polynomial $(x-1)(x-2)(x-3)^{2}$.
2. Let $p(x)=a_{n} x^{n}+\cdots+a_{0}$ be a polynomial which satisfies $p(-x)=p(x)$ for every real x. Prove that $a_{i}=0$ for every odd i.

2 Problems

1. Show that the real polynomial $\sum_{0}^{n} a_{i} x^{i}$ has at least one real root if $\sum \frac{a_{i}}{i+1}=0$.
2. Prove that we can find a real polynomial $p(y)$ such that $p(x-1 / x)=x^{n}-1 / x^{n}$ (where n is a positive integer) iff n is odd.
3. The roots of $x^{3}+a x^{2}+b x+c=0$ are α, β, and γ. Find the cubic whose roots are α^{3}, β^{3}, and γ^{3}.
4. Let $p(x)$ be a polynomial with real coefficients, and let $r(x)$ be the polynomial defined by the derivative $r(x)=p^{\prime}(x)$. Suppose that there are positive integers a and b for which $r^{a}(x)$ divides $p^{b}(x)$ as polynomials. Prove that for some real numbers A and α, and for some integer n, we have $p(x)=$ $A(x-\alpha)^{n}$.
5. $p(z)=z^{2}+a z+b$ has complex coefficients. $|p(z)|=1$ on the unit circle $|z|=1$. Show that $a=b=0$.
6. Let $p(z)$ and $q(z)$ be complex nonconstant polynomials with the same set of roots (but possibly different multiplicities). Suppose that $p(z)+1$ and $q(z)+1$ also have the same set of roots. Show that $p(z)=q(z)$.
7. Let $p(z)$ be a polynomial of degree n with complex coefficients. Its roots (in the complex plane) can be covered by a disk of radius r. Show that for any complex k, the roots of $n p(z)-k p^{\prime}(z)$ can be covered by a disk of radius $r+|k|$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.

