Putnam 5.13

Po-Shen Loh

17 November 2019

1 Problems

Putnam 1998/A4. Let $A_{1}=0$ and $A_{2}=1$. For $n>2$, the number A_{n} is defined by concatenating the decimal expansions of A_{n-1} and A_{n-2} from left to right. For example $A_{3}=A_{2} A_{1}=10, A_{4}=A_{3} A_{2}=$ 101, $A_{5}=A_{4} A_{3}=10110$, and so forth. Determine all n such that 11 divides A_{n}.

Putnam 1998/A5. Let \mathcal{F} be a finite collection of open discs in \mathbb{R}^{2} whose union contains a set $E \subseteq \mathbb{R}^{2}$. Show that there is a pairwise disjoint subcollection D_{1}, \ldots, D_{n} in \mathcal{F} such that

$$
E \subseteq \cup_{j=1}^{n} 3 D_{j} .
$$

Here, if D is the disc of radius r and center P, then $3 D$ is the disc of radius $3 r$ and center P.
Putnam 1998/A6. Let A, B, C denote distinct points with integer coordinates in \mathbb{R}^{2}. Prove that if

$$
(|A B|+|B C|)^{2}<8 \cdot[A B C]+1
$$

then A, B, C are three vertices of a square. Here $|X Y|$ is the length of segment $X Y$ and $[A B C]$ is the area of triangle $A B C$.

