Putnam $\sum^{5.9}$

Po-Shen Loh

20 October 2019

1 Problems

Putnam 2000/B4. Let $f(x)$ be a continuous function such that $f\left(2 x^{2}-1\right)=2 x f(x)$ for all x. Show that $f(x)=0$ for $-1 \leq x \leq 1$.

Putnam 2000/B5. Let S_{0} be a finite set of positive integers. We define finite sets S_{1}, S_{2}, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of $a-1$ or a is in S_{n}. Show that there exist infinitely many integers N for which $S_{N}=S_{0} \cup\left\{N+a: a \in S_{0}\right\}$.

Putnam 2000/B6. Let B be a set of more than $2^{n+1} / n$ distinct points with coordinates of the form $(\pm 1, \pm 1, \ldots, \pm 1)$ in n-dimensional space with $n \geq 3$. Show that there are three distinct points in B which are the vertices of an equilateral triangle.

