Putnam $\Sigma.7$

Po-Shen Loh

6 October 2019

1 Problems

Putnam 2001/B4. Let S denote the set of rational numbers different from $\{-1,0,1\}$. Define $f: S \to S$ by f(x) = x - 1/x. Prove or disprove that

$$\bigcap_{n=1}^{\infty} f^{(n)}(S) = \emptyset,$$

where $f^{(n)}$ denotes f composed with itself n times.

Putnam 2001/B5. Let a and b be real numbers in the interval (0, 1/2), and let g be a continuous real-valued function such that g(g(x)) = ag(x) + bx for all real x. Prove that g(x) = cx for some constant c.

Putnam 2001/B6. Assume that $(a_n)_{n\geq 1}$ is an increasing sequence of positive real numbers such that $\lim a_n/n = 0$. Must there exist infinitely many positive integers n such that $a_{n-i} + a_{n+i} < 2a_n$ for $i = 1, 2, \ldots, n-1$?