Putnam 5.2

Po-Shen Loh

1 September 2019

1 Problems

Putnam 2003/A4. Suppose that a, b, c, A, B, C are real numbers, $a \neq 0$ and $A \neq 0$, such that

$$
\left|a x^{2}+b x+c\right| \leq\left|A x^{2}+B x+C\right|
$$

for all real numbers x. Show that

$$
\left|b^{2}-4 a c\right| \leq\left|B^{2}-4 A C\right|
$$

Putnam 2003/A5. A Dyck n-path is a lattice path of n upsteps $(1,1)$ and n downsteps $(1,-1)$ that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5 -path illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck ($n-1$)-paths.

Putnam 2003/A6. For a set S of non-negative integers, let $r_{S}(n)$ denote the number of ordered pairs $\left(s_{1}, s_{2}\right)$ such that $s_{1} \in S, s_{2} \in S, s_{1} \neq s_{2}$, and $s_{1}+s_{2}=n$. Is it possible to partition the non-negative integers into two sets A and B in such a way that $r_{A}(n)=r_{B}(n)$ for all n ?

