Putnam E. 15

Po-Shen Loh

3 December 2019

1 Problems

Putnam 2015/B1. Let f be a three times differentiable function (defined on \mathbb{R} and real-valued) such that f has at least five distinct real zeros. Prove that $f+6 f^{\prime}+12 f^{\prime \prime}+8 f^{\prime \prime \prime}$ has at least two distinct real zeros.

Putnam 2015/B2. Given a list of the positive integers $1,2,3,4, \ldots$, take the first three numbers $1,2,3$ and their sum 6 and cross all four numbers off the list. Repeat with the three smallest remaining numbers $4,5,7$ and their sum 16. Continue in this way, crossing off the three smallest remaining numbers and their sum, and consider the sequence of sums produced: $6,16,27,36, \ldots$ Prove or disprove that there is some number in the sequence whose base 10 representation ends with 2015.

Putnam 2015/B3. Let S be the set of all 2×2 real matrices

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

whose entries a, b, c, d (in that order) form an arithmetic progression. Find all matrices M in S for which there is some integer $k>1$ such that M^{k} is also in S.

