# Putnam E. 13 

Po-Shen Loh

19 November 2019

## 1 Problems

Putnam 1991/B1. For each integer $n \geq 0$, let $S(n)=n-m^{2}$, where $m$ is the greatest integer with $m^{2} \leq n$. Define a sequence $\left(a_{k}\right)_{k=0}^{\infty}$ by $a_{0}=A$ and $a_{k+1}=a_{k}+S\left(a_{k}\right)$ for $k \geq 0$. For what positive integers $A$ is this sequence eventually constant?

Putnam 1991/B2. Suppose $f$ and $g$ are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers $x$ and $y$,

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y) \\
g(x+y) & =f(x) g(y)+g(x) f(y)
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all $x$.
Putnam 1991/B3. Does there exist a real number $L$ such that, if $m$ and $n$ are integers greater than $L$, then an $m \times n$ rectangle may be expressed as a union of $4 \times 6$ and $5 \times 7$ rectangles, any two of which intersect at most along their boundaries?

