Putnam E.12

Po-Shen Loh

12 November 2019

1 Problems

Putnam 1991/A1. A 2×3 rectangle has vertices at (0,0), (2,0), (0,3), and (2,3). It rotates 90° clockwise about the point (2,0). It then rotates 90° clockwise about the point (5,0), then 90° clockwise about the point (7,0), and finally, 90° clockwise about the point (10,0). (The side originally on the x-axis is now back on the x-axis.) Find the area of the region above the x-axis and below the curve traced out by the point whose initial position is (1,1).

Putnam 1991/A2. Let **A** and **B** be different $n \times n$ matrices with real entries. If $\mathbf{A}^3 = \mathbf{B}^3$ and $\mathbf{A}^2 \mathbf{B} = \mathbf{B}^2 \mathbf{A}$, can $\mathbf{A}^2 + \mathbf{B}^2$ be invertible?

Putnam 1991/A3. Find all real polynomials p(x) of degree $n \geq 2$ for which there exist real numbers $r_1 < r_2 < \cdots < r_n$ such that

1.
$$p(r_i) = 0$$
 for all $i = 1, 2, ..., n$, and

2.
$$p'(\frac{r_i+r_{i+1}}{2}) = 0$$
 for all $i = 1, 2, \dots, n-1$,

where p'(x) denotes the derivative of p(x).