Putnam E. 12

Po-Shen Loh

12 November 2019

1 Problems

Putnam 1991/A1. A 2×3 rectangle has vertices at $(0,0),(2,0),(0,3)$, and $(2,3)$. It rotates 90° clockwise about the point $(2,0)$. It then rotates 90° clockwise about the point $(5,0)$, then 90° clockwise about the point $(7,0)$, and finally, 90° clockwise about the point $(10,0)$. (The side originally on the x-axis is now back on the x-axis.) Find the area of the region above the x-axis and below the curve traced out by the point whose initial position is $(1,1)$.

Putnam 1991/A2. Let \mathbf{A} and \mathbf{B} be different $n \times n$ matrices with real entries. If $\mathbf{A}^{3}=\mathbf{B}^{3}$ and $\mathbf{A}^{2} \mathbf{B}=\mathbf{B}^{2} \mathbf{A}$, can $\mathbf{A}^{2}+\mathbf{B}^{2}$ be invertible?

Putnam 1991/A3. Find all real polynomials $p(x)$ of degree $n \geq 2$ for which there exist real numbers $r_{1}<r_{2}<\cdots<r_{n}$ such that

1. $p\left(r_{i}\right)=0$ for all $i=1,2, \ldots, n$, and
2. $p^{\prime}\left(\frac{r_{i}+r_{i+1}}{2}\right)=0$ for all $i=1,2, \ldots, n-1$,
where $p^{\prime}(x)$ denotes the derivative of $p(x)$.
