## Putnam E.11

Po-Shen Loh

## 5 November 2019

## 1 Problems

Putnam 2014/B1. A base 10 over-expansion of a positive integer N is an expression of the form

$$N = d_k 10^k + d_{k-1} 10^{k-1} + \dots + d_0 10^0$$

with  $d_k \neq 0$  and  $d_i \in \{0, 1, 2, ..., 10\}$  for all *i*. For instance, the integer N = 10 has two base 10 over-expansions:  $10 = 10 \cdot 10^0$  and the usual base 10 expansion  $10 = 1 \cdot 10^1 + 0 \cdot 10^0$ . Which positive integers have a unique base 10 over-expansion?

- **Putnam 2014/B2.** Suppose that f is a function on the interval [1,3] such that  $-1 \le f(x) \le 1$  for all x and  $\int_1^3 f(x) dx = 0$ . How large can  $\int_1^3 \frac{f(x)}{x} dx$  be?
- **Putnam 2014/B3.** Let A be an  $m \times n$  matrix with rational entries. Suppose that there are at least m + n distinct prime numbers among the absolute values of the entries of A. Show that the rank of A is at least 2.