Putnam E.8

Po-Shen Loh

15 October 2019

1 Problems

Putnam 1990/A1. Let

 $T_0 = 2, T_1 = 3, T_2 = 6,$

and for $n \geq 3$,

 $T_n = (n+4)T_{n-1} - 4nT_{n-2} + (4n-8)T_{n-3}.$

The first few terms are

2, 3, 6, 14, 40, 152, 784, 5168, 40576.

Find, with proof, a formula for T_n of the form $T_n = A_n + B_n$, where $\{A_n\}$ and $\{B_n\}$ are well-known sequences.

Putnam 1990/A2. Is $\sqrt{2}$ the limit of a sequence of numbers of the form $\sqrt[3]{n} - \sqrt[3]{m}$ (n, m = 0, 1, 2, ...)?

Putnam 1990/A3. Prove that any convex pentagon whose vertices (no three of which are collinear) have integer coordinates must have area greater than or equal to 5/2.