Putnam E. 7

Po-Shen Loh

8 October 2019

1 Problems

Putnam 2013/B1. For positive integers n, let the numbers $c(n)$ be determined by the rules $c(1)=1$, $c(2 n)=c(n)$, and $c(2 n+1)=(-1)^{n} c(n)$. Find the value of

$$
\sum_{n=1}^{2013} c(n) c(n+2) .
$$

Putnam 2013/B2. Let $C=\bigcup_{N=1}^{\infty} C_{N}$, where C_{N} denotes the set of those 'cosine polynomials' of the form

$$
f(x)=1+\sum_{n=1}^{N} a_{n} \cos (2 \pi n x)
$$

for which:
(i) $f(x) \geq 0$ for all real x, and
(ii) $a_{n}=0$ whenever n is a multiple of 3 .

Determine the maximum value of $f(0)$ as f ranges through C, and prove that this maximum is attained.
Putnam 2013/B3. Let \mathcal{P} be a nonempty collection of subsets of $\{1, \ldots, n\}$ such that:
(i) if $S, S^{\prime} \in \mathcal{P}$, then $S \cup S^{\prime} \in \mathcal{P}$ and $S \cap S^{\prime} \in \mathcal{P}$, and
(ii) if $S \in \mathcal{P}$ and $S \neq \emptyset$, then there is a subset $T \subset S$ such that $T \in \mathcal{P}$ and T contains exactly one fewer element than S.

Suppose that $f: \mathcal{P} \rightarrow \mathbb{R}$ is a function such that $f(\emptyset)=0$ and

$$
f\left(S \cup S^{\prime}\right)=f(S)+f\left(S^{\prime}\right)-f\left(S \cap S^{\prime}\right) \text { for all } S, S^{\prime} \in \mathcal{P}
$$

Must there exist real numbers f_{1}, \ldots, f_{n} such that

$$
f(S)=\sum_{i \in S} f_{i}
$$

for every $S \in \mathcal{P}$?

