Putnam E. 6

Po-Shen Loh

1 October 2019

1 Problems

Putnam 2013/A1. Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all 20 integers is 39 . Show that there are two faces that share a vertex and have the same integer written on them.

Putnam 2013/A2. Let S be the set of all positive integers that are not perfect squares. For n in S, consider choices of integers $a_{1}, a_{2}, \ldots, a_{r}$ such that $n<a_{1}<a_{2}<\cdots<a_{r}$ and $n \cdot a_{1} \cdot a_{2} \cdots a_{r}$ is a perfect square, and let $f(n)$ be the minumum of a_{r} over all such choices. For example, $2 \cdot 3 \cdot 6$ is a perfect square, while $2 \cdot 3,2 \cdot 4,2 \cdot 5,2 \cdot 3 \cdot 4,2 \cdot 3 \cdot 5,2 \cdot 4 \cdot 5$, and $2 \cdot 3 \cdot 4 \cdot 5$ are not, and so $f(2)=6$. Show that the function f from S to the integers is one-to-one.

Putnam 2013/A3. Suppose that the real numbers $a_{0}, a_{1}, \ldots, a_{n}$ and x, with $0<x<1$, satisfy

$$
\frac{a_{0}}{1-x}+\frac{a_{1}}{1-x^{2}}+\cdots+\frac{a_{n}}{1-x^{n+1}}=0
$$

Prove that there exists a real number y with $0<y<1$ such that

$$
a_{0}+a_{1} y+\cdots+a_{n} y^{n}=0
$$

