Putnam E. 5

Po-Shen Loh

24 September 2019

1 Problems

Putnam 1989/B1. A dart, thrown at random, hits a square target. Assuming that any two parts of the target of equal area are equally likely to be hit, find the probability that the point hit is nearer to the center than to any edge. Express your answer in the form $\frac{a \sqrt{b}+c}{d}$, where a, b, c, d are integers.

Putnam 1989/B2. Let S be a non-empty set with an associative operation that is left and right cancellative $(x y=x z$ implies $y=z$, and $y x=z x$ implies $y=z)$. Assume that for every a in S the set $\left\{a^{n}: n=\right.$ $1,2,3, \ldots\}$ is finite. Must S be a group?

Putnam 1989/B3. Let f be a function on $[0, \infty)$, differentiable and satisfying

$$
f^{\prime}(x)=-3 f(x)+6 f(2 x)
$$

for $x>0$. Assume that $|f(x)| \leq e^{-\sqrt{x}}$ for $x \geq 0$ (so that $f(x)$ tends rapidly to 0 as x increases). For n a non-negative integer, define

$$
\mu_{n}=\int_{0}^{\infty} x^{n} f(x) d x
$$

(sometimes called the nth moment of f).
a) Express μ_{n} in terms of μ_{0}.
b) Prove that the sequence $\left\{\mu_{n} \frac{3^{n}}{n!}\right\}$ always converges, and that the limit is 0 only if $\mu_{0}=0$.

