Putnam E. 2

Po-Shen Loh

3 September 2019

1 Problems

2012/A1. Let $d_{1}, d_{2}, \ldots, d_{12}$ be real numbers in the open interval $(1,12)$. Show that there exist distinct indices i, j, k such that d_{i}, d_{j}, d_{k} are the side lengths of an acute triangle.

2012/A2. Let $*$ be a commutative and associative binary operation on a set S. Assume that for every x and y in S, there exists z in S such that $x * z=y$. (This z may depend on x and y.) Show that if a, b, c are in S and $a * c=b * c$, then $a=b$.

2012/A3. Let $f:[-1,1] \rightarrow \mathbb{R}$ be a continuous function such that
(i) $f(x)=\frac{2-x^{2}}{2} f\left(\frac{x^{2}}{2-x^{2}}\right)$ for every x in $[-1,1]$,
(ii) $f(0)=1$, and
(iii) $\lim _{x \rightarrow 1^{-}} \frac{f(x)}{\sqrt{1-x}}$ exists and is finite.

Prove that f is unique, and express $f(x)$ in closed form.

