7. Convergence

Po-Shen Loh

CMU Putnam Seminar, Fall 2019

1 Classical results

Harmonic series. Without using Calculus, show that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
Infinite product. Suppose $\left(a_{n}\right)$ is a sequence of numbers which satisfies $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$. Then the product $\left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right) \cdots$ tends to a nonzero limit.

Alternating series. Let $\left(a_{n}\right)$ be a monotonic decreasing sequence of positive real numbers which converges to 0 . Then the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is convergent.

2 Problems

1. Is the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\log n)}
$$

convergent or divergent?
2. Is the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2}}
$$

convergent or divergent?
3. Is the series

$$
\sum_{n=100}^{\infty} \frac{1}{n(\log n)(\log \log n)}
$$

convergent or divergent?
4. Show that there is a rearrangement of the fractions $-\frac{1}{1}, \frac{1}{2},-\frac{1}{3}, \frac{1}{4}$, etc., into a sequence $a_{1}, a_{2}, a_{3}, \ldots$, such that their limit of partial sums $a_{1}+a_{2}+\cdots+a_{n}$ is π.
5. Let $\left(a_{n}\right)$ be a monotonic decreasing sequence of positive real numbers with limit 0 (so $a_{1} \geq a_{2} \geq \cdots \geq$ 0). Let $\left(b_{n}\right)$ be a rearrangement of the sequence such that for every non-negative integer m, the terms $b_{3 m+1}, b_{3 m+2}, b_{3 m+3}$ are a rearrangement of the terms $a_{3 m+1}, a_{3 m+2}, a_{3 m+3}$ (thus, for example, the first 6 terms of the sequence $\left(b_{n}\right)$ could be $\left.a_{3}, a_{2}, a_{1}, a_{4}, a_{6}, a_{5}\right)$. Prove or give a counterexample to the following statement: the series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ is convergent.
6. Determine whether the series

$$
\sum_{n=2}^{\infty} \frac{1}{n^{1+(\log \log n)^{-2}}}
$$

is convergent or divergent. (The logarithm is in base e.)
7. Let $\left(a_{n}\right)$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$. Prove that $\sum_{n=1}^{\infty}\left|1-\frac{a_{n+1}}{a_{n}}\right|$ is divergent.
8. Find

$$
\lim _{x \rightarrow \infty}(2 x)^{1+\frac{1}{2 x}}-x^{1+\frac{1}{x}}-x
$$

9. Let $\left(a_{n}\right)_{n>1}$ be an infinite sequence with $a_{n}>0$ for all n. For $n>1$, let b_{n} denote the geometric mean of a_{1}, \ldots, a_{n}, that is, $\sqrt[n]{a_{1} \cdots a_{n}}$. Suppose $\sum_{n=1}^{\infty} a_{n}$ is convergent. Prove that $\sum_{n=1}^{\infty} b_{n}^{2}$ is also convergent.
10. Assume that $\left(a_{n}\right)_{n \geq 1}$ is an increasing sequence of positive real numbers such that $\lim \frac{a_{n}}{n}=0$. Must there exist infinitely many positive integers n such that $a_{n-i}+a_{n+i}<2 a_{n}$ for $i=1,2, \ldots, n-1$?
11. Define a sequence by $a_{1}=1, a_{2}=\frac{1}{2}$, and $a_{n+2}=a_{n+1}-\frac{a_{n} a_{n+1}}{2}$ for every positive integer n. Find

$$
\lim _{n \rightarrow \infty} n a_{n}
$$

12. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series of positive terms (so $a_{i}>0$ for all i), and define $b_{n}=\frac{1}{n a_{n}^{2}}$. Prove that

$$
\sum_{n=1}^{\infty} \frac{n}{b_{1}+b_{2}+\cdots+b_{n}}
$$

is convergent.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

