7. Convergence

Po-Shen Loh

CMU Putnam Seminar, Fall 2019

1 Classical results

Harmonic series. Without using Calculus, show that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

- **Infinite product.** Suppose (a_n) is a sequence of numbers which satisfies $\sum_{n=1}^{\infty} |a_n| < \infty$. Then the product $(1+a_1)(1+a_2)(1+a_3)\cdots$ tends to a nonzero limit.
- Alternating series. Let (a_n) be a monotonic decreasing sequence of positive real numbers which converges to 0. Then the series $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent.

2 Problems

1. Is the series

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)}$$

convergent or divergent?

2. Is the series

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}$$

convergent or divergent?

3. Is the series

$$\sum_{n=100}^{\infty} \frac{1}{n(\log n)(\log \log n)}$$

convergent or divergent?

- 4. Show that there is a rearrangement of the fractions $-\frac{1}{1}$, $\frac{1}{2}$, $-\frac{1}{3}$, $\frac{1}{4}$, etc., into a sequence a_1, a_2, a_3, \ldots , such that their limit of partial sums $a_1 + a_2 + \cdots + a_n$ is π .
- 5. Let (a_n) be a monotonic decreasing sequence of positive real numbers with limit 0 (so $a_1 \ge a_2 \ge \cdots \ge 0$). Let (b_n) be a rearrangement of the sequence such that for every non-negative integer m, the terms b_{3m+1} , b_{3m+2} , b_{3m+3} are a rearrangement of the terms a_{3m+1} , a_{3m+2} , a_{3m+3} (thus, for example, the first 6 terms of the sequence (b_n) could be $a_3, a_2, a_1, a_4, a_6, a_5$). Prove or give a counterexample to the following statement: the series $\sum_{n=1}^{\infty} (-1)^n b_n$ is convergent.
- 6. Determine whether the series

$$\sum_{n=2}^{\infty} \frac{1}{n^{1+(\log \log n)^{-2}}}$$

is convergent or divergent. (The logarithm is in base e.)

- 7. Let (a_n) be a sequence of positive real numbers such that $\lim_{n\to\infty} a_n = 0$. Prove that $\sum_{n=1}^{\infty} \left| 1 \frac{a_{n+1}}{a_n} \right|$ is divergent.
- 8. Find

$$\lim_{x \to \infty} (2x)^{1 + \frac{1}{2x}} - x^{1 + \frac{1}{x}} - x.$$

- 9. Let $(a_n)_{n>1}$ be an infinite sequence with $a_n > 0$ for all n. For n > 1, let b_n denote the geometric mean of a_1, \ldots, a_n , that is, $\sqrt[n]{a_1 \cdots a_n}$. Suppose $\sum_{n=1}^{\infty} a_n$ is convergent. Prove that $\sum_{n=1}^{\infty} b_n^2$ is also convergent.
- 10. Assume that $(a_n)_{n\geq 1}$ is an increasing sequence of positive real numbers such that $\lim \frac{a_n}{n} = 0$. Must there exist infinitely many positive integers n such that $a_{n-i} + a_{n+i} < 2a_n$ for i = 1, 2, ..., n 1?
- 11. Define a sequence by $a_1 = 1$, $a_2 = \frac{1}{2}$, and $a_{n+2} = a_{n+1} \frac{a_n a_{n+1}}{2}$ for every positive integer n. Find

$$\lim_{n \to \infty} n a_n.$$

12. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series of positive terms (so $a_i > 0$ for all *i*), and define $b_n = \frac{1}{na_n^2}$. Prove that

$$\sum_{n=1}^{\infty} \frac{n}{b_1 + b_2 + \dots + b_r}$$

is convergent.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.