6. Inequalities

Po-Shen Loh

CMU Putnam Seminar, Fall 2019

1 Classical results

AM-GM. For any non-negative reals x_{1}, \ldots, x_{n},

$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leq \frac{x_{1}+\cdots+x_{n}}{n}
$$

Rearrangement. For any reals $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$, and any reordering $y_{\sigma(1)}, y_{\sigma(2)}, \ldots, y_{\sigma(n)}$,

$$
x_{1} y_{n}+x_{2} y_{n-1}+\cdots+x_{n} y_{1} \leq x_{1} y_{\sigma(1)}+x_{2} y_{\sigma(2)}+\cdots x_{n} y_{\sigma(n)} \leq x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

Cauchy-Schwarz. For any reals x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n},

$$
\left(x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}\right)^{2} \leq\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)
$$

Jensen. For any convex function f, and any reals x_{1}, \ldots, x_{n},

$$
f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) \leq \frac{f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)}{n} .
$$

2 Problems

1. Several gas stations are located along a circular road. Among them, there is just enough gas for one car to complete a single trip around the circle. Is it always true that there is always a place where you can start, so that your car can make it all the way around once?
2. A set of $n>3$ real numbers has sum at least n and the sum of the squares of the numbers is at least n^{2}. Show that the largest positive number is at least 2 .
3. The sum of the squares of two real numbers is 4 . What is the smallest possible value of the sum of their fourth powers?
4. We have 2^{m} sheets of paper, with the number 1 written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are a and b, then we erase these numbers and write the number $a+b$ on both sheets. Prove that after $m 2^{m-1}$ steps, the sum of the numbers on all the sheets is at least 4^{m}.
5. Let m and n be positive integers. Let $a_{1}, a_{2}, \ldots, a_{m}$ be distinct elements of $\{1,2, \ldots, n\}$ such that whenever $a_{i}+a_{j} \leq n$ for some i, j (possibly the same) we have $a_{i}+a_{j}=a_{k}$ for some k. Prove that:

$$
\frac{a_{1}+\cdots+a_{m}}{m} \geq \frac{n+1}{2} .
$$

6. Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of real numbers, and let m be a fixed positive integer less than n. We say an index k with $1 \leq k \leq n$ is good if there exists some ℓ with $1 \leq \ell \leq m$ such that

$$
a_{k}+a_{k+1}+\cdots+a_{k+\ell-1} \geq 0
$$

where the indices are taken modulo n. Let T be the set of all good indices. Prove that

$$
\sum_{k \in T} a_{k} \geq 0
$$

7. Can an arc of a parabola inside a circle of radius 1 have a length greater than 4 ?
8. For a sequence $x_{1}, x_{2}, \ldots, x_{n}$ of real numbers, we define its price as

$$
\max _{1 \leq i \leq n}\left|x_{1}+\cdots+x_{i}\right| .
$$

Given n real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks all possible ways and finds the minimum possible price D. Greedy George, on the other hand, chooses x_{1} such that $\left|x_{1}\right|$ is as small as possible; among the remaining numbers, he chooses x_{2} such that $\left|x_{1}+x_{2}\right|$ is as small as possible, and so on. Thus, in the i-th step he chooses x_{i} among the remaining numbers so as to minimize the value of $\left|x_{1}+x_{2}+\cdots+x_{i}\right|$. In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence with price G.
Find the least possible constant c such that for every positive integer n, for every collection of n real numbers, and for every possible sequence that George might obtain, the resulting values satisfy the inequality $G \leq c D$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

