5. Functional Equations

Po-Shen Loh

CMU Putnam Seminar, Fall 2019

1 Classical results

Cauchy. Linear functions through the origin are the only continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$.

2 Problems

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(x)=f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. Prove that f is constant.
2. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy

$$
f(x+y)+1=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$.
3. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(0)=\frac{1}{2}$, and there is some real α for which

$$
f(x+y)=f(x) f(\alpha-y)+f(y) f(\alpha-x)
$$

for all x, y. Prove that f is constant.
4. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y)=f(x)+f(y)+f(x) f(y)
$$

for all real $x, y \in \mathbb{R}$.
5. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy

$$
f(x+y)+f(y+z)+f(z+x) \geq 3 f(x+2 y+3 z)
$$

for all x, y, z.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous decreasing function. Prove that the system

$$
\begin{aligned}
& x=f(y), \\
& y=f(z), \\
& z=f(x)
\end{aligned}
$$

has a unique solution.
7. Find all $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
[f(x)+f(y)][f(u)+f(v)]=f(x u-y v)+f(x v+y u)
$$

for all x, y, u, v.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(0)=0, f(1)=1$, and $f(f(f(f(x))))=x$ for every $x \in[0,1]$. Prove that $f(x)=x$ for each $x \in[0,1]$.
9. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}+f(y)\right)=y+f(x)^{2}
$$

for all x, y.
10. Prove that there is no function f from the set of non-negative integers into itself such that $f(f(n))=$ $n+1987$ for all n.
11. Does there exist a function f from the positive integers to the positive integers such that $f(1)=2$, $f(f(n))=f(n)+n$ for all n, and $f(n)<f(n+1)$ for all n ?

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

