4. Calculus

Po-Shen Loh

CMU Putnam Seminar, Fall 2019

1 Classical results

Warm-up. Determine f'(z), if

$$f(z) = \int_0^{z^2} e^{-x^2} dx$$

Gaussian. Calculate

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

Leibniz formula for π . Recursively compute the integral

$$I_n = \int_0^{\pi/4} \tan^{2n} x dx$$

2 Problems

- 1. Let $f(x) = \int_0^x \sin(t^2 t + x) dt$. Compute f''(x) + f(x), and deduce that $f^{(12)}(0) + f^{(10)}(0) = 0$. (Here, $f^{(10)}$ indicates the 10th derivative.)
- 2. Evaluate

$$\int_0^{\pi/2} \frac{\cos^4 x + \sin x \cos^3 x + \sin^2 x \cos^2 x + \sin^3 x \cos x}{\sin^4 x + \cos^4 x + 2\sin x \cos^3 x + 2\sin^2 x \cos^2 x + 2\sin^3 x \cos x} dx$$

3. Evaluate

$$\int_1^4 \frac{x-2}{(x^2+4)\sqrt{x}} dx.$$

- 4. Three infinitely long circular cylinders, each with unit radius, have their axes along the x, y and z-axes. Determine the volume of the region common to all three cylinders. (Thus one needs the volume common to $\{y^2 + z^2 \le 1\}, \{z^2 + x^2 \le 1\}$, and $\{x^2 + y^2 \le 1\}$.)
- 5. Compute the limit

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right)$$

6. Evaluate

$$\int_1^2 \frac{\ln x}{2 - 2x + x^2} dx.$$

7. Evaluate

$$\int_0^\infty \frac{\arctan(\pi x) - \arctan(x)}{x} dx$$

where $0 \leq \arctan(x) < \frac{\pi}{2}$ for $0 \leq x < \infty$.

8. Use the Fourier series of the function of period 1 defined by $f(x) = \frac{1}{2} - x$ for $0 \le x < 1$ to prove Euler's formula:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.