4. Calculus

Po-Shen Loh

CMU Putnam Seminar, Fall 2019

1 Classical results

Warm-up. Determine $f^{\prime}(z)$, if

$$
f(z)=\int_{0}^{z^{2}} e^{-x^{2}} d x
$$

Gaussian. Calculate

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

Leibniz formula for π. Recursively compute the integral

$$
I_{n}=\int_{0}^{\pi / 4} \tan ^{2 n} x d x
$$

2 Problems

1. Let $f(x)=\int_{0}^{x} \sin \left(t^{2}-t+x\right) d t$. Compute $f^{\prime \prime}(x)+f(x)$, and deduce that $f^{(12)}(0)+f^{(10)}(0)=0$. (Here, $f^{(10)}$ indicates the 10th derivative.)
2. Evaluate

$$
\int_{0}^{\pi / 2} \frac{\cos ^{4} x+\sin x \cos ^{3} x+\sin ^{2} x \cos ^{2} x+\sin ^{3} x \cos x}{\sin ^{4} x+\cos ^{4} x+2 \sin x \cos ^{3} x+2 \sin ^{2} x \cos ^{2} x+2 \sin ^{3} x \cos x} d x
$$

3. Evaluate

$$
\int_{1}^{4} \frac{x-2}{\left(x^{2}+4\right) \sqrt{x}} d x
$$

4. Three infinitely long circular cylinders, each with unit radius, have their axes along the x, y and z axes. Determine the volume of the region common to all three cylinders. (Thus one needs the volume common to $\left\{y^{2}+z^{2} \leq 1\right\},\left\{z^{2}+x^{2} \leq 1\right\}$, and $\left\{x^{2}+y^{2} \leq 1\right\}$.)
5. Compute the limit

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)
$$

6. Evaluate

$$
\int_{1}^{2} \frac{\ln x}{2-2 x+x^{2}} d x
$$

7. Evaluate

$$
\int_{0}^{\infty} \frac{\arctan (\pi x)-\arctan (x)}{x} d x
$$

where $0 \leq \arctan (x)<\frac{\pi}{2}$ for $0 \leq x<\infty$.
8. Use the Fourier series of the function of period 1 defined by $f(x)=\frac{1}{2}-x$ for $0 \leq x<1$ to prove Euler's formula:

$$
\frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots
$$

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

