3. Number theory

Po-Shen Loh

CMU Putnam Seminar, Fall 2019

1 Classical results

Warm-up. Let p be a prime. Expand $(x+y+z)^{p}$, reducing the coefficients modulo p.
Fermat. For any prime p and any integer a not divisible by p,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Euler. For any positive integer n and any integer a relatively prime to n,

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

where $\phi(n)$ is the number of integers in $\{1, \ldots, n\}$ that are relatively prime to n.
Wilson. For every prime p, we have $(p-1)!\equiv-1(\bmod p)$.
Lucas. Let n and k be non-negative integers, with base- p expansions $n=\left(n_{t} n_{t-1} \ldots n_{0}\right)_{(p)}$ and $k=$ $\left(k_{t} k_{t-1} \ldots k_{0}\right)_{(p)}$, respectively. Then

$$
\binom{n}{k} \equiv\binom{n_{t}}{k_{t}} \times\binom{ n_{t-1}}{k_{t-1}} \times \cdots \times\binom{ n_{0}}{k_{0}} \quad(\bmod p)
$$

2 Problems

1. Let p be an odd prime. Expand $(x-y)^{p-1}$, reducing the coefficients modulo p.
2. Define $f(n)$ for n a positive integer by $f(1)=3$ and $f(n+1)=3^{f(n)}$. What is the last digit of $f(2012)$?
3. Define $f(n)$ for n a positive integer by $f(1)=3$ and $f(n+1)=3^{f(n)}$. What are the last two digits of $f(2012)$?
4. The sets $\left\{a_{1}, a_{2}, \ldots, a_{999}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{999}\right\}$ together contain all the integers from 1 to 1998. For each $i,\left|a_{i}-b_{i}\right| \in\{1,6\}$. For example, we might have $a_{1}=18, a_{2}=1, b_{1}=17, b_{2}=7$. Show that $\sum_{1}^{999}\left|a_{i}-b_{i}\right| \equiv 9(\bmod 10)$.
5. Does there exist an infinite sequence of positive integers $a_{1}, a_{2}, a_{3}, \ldots$ such that a_{m} and a_{n} are relatively prime if and only if $|m-n|=1$?
6. Let r and s be odd positive integers. The sequence a_{n} is defined as follows: $a_{1}=r, a_{2}=s$, and a_{n} is the greatest odd divisor of $a_{n-1}+a_{n-2}$. Show that, for sufficiently large n, a_{n} is constant and find this constant (in terms of r and s).
7. Let n be an arbitrary positive integer. Show that the following sequence is eventually constant modulo n :

$$
2, \quad 2^{2}, \quad 2^{2^{2}}, \quad 2^{2^{2^{2}}}, \quad 2^{2^{2^{2^{2}}}}, \quad 2^{2^{2^{2^{2^{2}}}}}, \ldots
$$

8. For a positive integer a, define a sequence of integers x_{1}, x_{2}, \ldots by letting $x_{1}=a$ and $x_{n+1}=2 x_{n}+1$ for $n \geq 1$. Let $y_{n}=2^{x_{n}}-1$. Determine the largest possible k such that for some positive integer a, the numbers y_{1}, \ldots, y_{k} are all prime.
9. Show that there exists a set A of positive integers with the following property: for any infinite set S of primes, there exist two positive integers m in A and n not in A, each of which is a product of k distinct elements of S for some $k \geq 2$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

