2. Polynomials

Po-Shen Loh

CMU Putnam Seminar, Fall 2019

1 Classical results

Algebra. If r is a root of the polynomial $P(x)$, then P factors as $(x-r) Q(x)$ for some polynomial Q.
Algebra. Every polynomial of degree n has at most n distinct roots.
Lagrange Interpolation. Show that there is a degree-4 polynomial which takes values $P(0)=0, P(1)=0$, $P(2)=0, P(3)=1$, and $P(4)=1$.

Reed-Solomon codes. Automatic spell checkers know to correct "teh" to "the". More abstractly, an error-correcting code with minimum distance d is a collection of strings of length n from an alphabet A, with the property that any two strings differ by at least d pointwise edits. It turns out that there are nice error-correcting codes with minimum distance d over alphabets of size q, for prime powers q, and these are based on polynomials!

Multiple roots. If r is a real root of the polynomial $P(x)$, and r has multiplicity greater than 1 , then both $P(r)=0$ and $P^{\prime}(r)=0$.

Gauss-Lucas. The zeros of the derivative $P^{\prime}(z)$ of any polynomial lie in the convex hull of the zeros of the polynomial $P(z)$.

2 Problems

1. Find a polynomial with integer coefficients that has the zero $\sqrt{2}+\sqrt[3]{3}$.
2. There is no polynomial which has the property that $P(k)=2^{k}$ for all positive integers k.
3. Let a_{1}, \ldots, a_{n} be positive real numbers. Prove that the polynomial $P(x)=x^{n}-a_{1} x^{n-1}-a_{2} x^{n-2}-$ $\cdots-a_{n}$ has a unique positive zero.
4. Solve the system

$$
\begin{array}{r}
x+y+z=1 \\
x y z=1
\end{array}
$$

knowing that x, y, z are complex numbers of absolute value equal to 1 .
5. Let $P(z)$ and $Q(z)$ be polynomials with complex coefficients of degree greater than or equal to 1 with the property that $P(z)=0$ if and only if $Q(z)=0$ and $P(z)=1$ if and only if $Q(z)=1$. Prove that the polynomials are equal.
6. Let $P(x)$ and $Q(x)$ be arbitrary polynomials with real coefficients, and let d be the degree of $P(x)$. Assume that $P(x)$ is not the zero polynomial. Prove that there exist polynomials $A(x)$ and $B(x)$ with real coefficients, such that:
(i) both A and B have degree at most $d / 2$, and
(ii) at most one of A and B is the zero polynomial, and
(iii) $\frac{A(x)+Q(x) B(x)}{P(x)}$ is a polynomial with real coefficients. That is, there is some polynomial $C(x)$ with real coefficients such that $A(x)+Q(x) B(x)=P(x) C(x)$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

