Putnam $\Sigma.12$

Po-Shen Loh

11 November 2018

1 Problems

Putnam 2010/A4. Prove that for each positive integer n, the number $10^{10^{10^n}} + 10^{10^n} + 10^{n} - 1$ is not prime.

Putnam 2010/A5. Let G be a group, with operation *. Suppose that

- (i) G is a subset of \mathbb{R}^3 (but * need not be related to addition of vectors);
- (ii) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b} = \mathbf{a} * \mathbf{b}$ or $\mathbf{a} \times \mathbf{b} = 0$ (or both), where \times is the usual cross product in \mathbb{R}^3 .

Prove that $\mathbf{a} \times \mathbf{b} = 0$ for all $\mathbf{a}, \mathbf{b} \in G$.

Putnam 2010/A6. Let $f:[0,\infty)\to\mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty}f(x)=0$. Prove that $\int_0^\infty \frac{f(x)-f(x+1)}{f(x)}\,dx$ diverges.