Putnam $\Sigma.2$

Po-Shen Loh

2 September 2018

1 Problems

Putnam 2006/A4. Let $S = \{1, 2, ..., n\}$ for some integer n > 1. Say a permutation π of S has a local maximum at $k \in S$ if

- (i) $\pi(k) > \pi(k+1)$ for k=1;
- (ii) $\pi(k-1) < \pi(k)$ and $\pi(k) > \pi(k+1)$ for 1 < k < n;
- (iii) $\pi(k-1) < \pi(k)$ for k = n.

(For example, if n = 5 and π takes values at 1, 2, 3, 4, 5 of 2, 1, 4, 5, 3, then π has a local maximum of 2 at k = 1, and a local maximum of 5 at k = 4.) What is the average number of local maxima of a permutation of S, averaging over all permutations of S?

Putnam 2006/A5. Let n be a positive odd integer and let θ be a real number such that θ/π is irrational. Set $a_k = \tan(\theta + k\pi/n)$, k = 1, 2, ..., n. Prove that

$$\frac{a_1 + a_2 + \dots + a_n}{a_1 a_2 \cdots a_n}$$

is an integer, and determine its value.

Putnam 2006/A6. Four points are chosen uniformly and independently at random in the interior of a given circle. Find the probability that they are the vertices of a convex quadrilateral.