Putnam E.7

Po-Shen Loh

10 October 2018

1 Problems

- **Putnam 2002/A1.** Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^k-1}$ has the form $\frac{P_n(x)}{(x^k-1)^{n+1}}$ where $P_n(x)$ is a polynomial. Find $P_n(1)$.
- **Putnam 2002/A2.** Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.
- **Putnam 2002/A3.** Let $n \ge 2$ be an integer and T_n be the number of non-empty subsets S of $\{1, 2, 3, \ldots, n\}$ with the property that the average of the elements of S is an integer. Prove that $T_n n$ is always even.