Putnam E.1

Po-Shen Loh

29 August 2018

1 Problems

Putnam 2005/A1. Show that every positive integer is a sum of one or more numbers of the form $2^r 3^s$, where r and s are nonnegative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.)

Putnam 2005/A2. Let $\mathbf{S} = \{(a,b)|a=1,2,\ldots,n,b=1,2,3\}$. A rook tour of \mathbf{S} is a polygonal path made up of line segments connecting points p_1, p_2, \ldots, p_{3n} in sequence such that

- (i) $p_i \in \mathbf{S}$
- (ii) p_i and p_{i+1} are a unit distance apart, for $1 \le i < 3n$,
- (iii) for each $p \in \mathbf{S}$ there is a unique i such that $p_i = p$.

How many rook tours are there that begin at (1,1) and end at (n,1)?

Putnam 2005/A3. Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z) = p(z)/z^{n/2}$. Show that all zeros of g'(z) = 0 have absolute value 1.