3. Number theory

Po-Shen Loh

CMU Putnam Seminar, Fall 2018

1 Well-known statements

Fermat's Little Theorem. For every prime p and any integer a which is not divisible by p, we have $a^{p-1} \equiv 1 \pmod{p}$.

Euler's Theorem. Let $\varphi(n)$ denote the number of positive integers in $\{1, 2, ..., n\}$ which are relatively prime to n. Then, for any integer a which is relatively prime to n,

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Wilson's Theorem. A positive integer n is a prime if and only if $(n-1)! \equiv -1 \pmod{n}$.

- **Dirichlet's Theorem.** For any two positive integers a and d which are relatively prime, the arithmetic progression $a, a + d, a + 2d, \ldots$ contains infinitely many primes.
- **Quadratic residues.** Let p be a prime. There are exactly $\frac{p+1}{2}$ residues r such that there exist solutions to $x^2 \equiv r \pmod{p}$.

2 Problems

- 1. The 9-digit number 2^{29} has exactly 9 digits, and they are all distinct. Which of the 10 possible digits 0–9 does not appear?
- 2. There are infinitely many primes of the form 4n 1, where n is an integer.
- 3. Let p be a prime, and let $n \ge k$ be non-negative integers. Prove that

$$\binom{pn}{pk} \equiv \binom{n}{k} \pmod{p}.$$

- 4. Show that for every positive integer n, there is an integer N > n such that the number 5^n appears as the last few digits of 5^N . For example, if n = 3, we have $5^3 = 125$, and $5^5 = 3125$, so N = 5 would work.
- 5. Prove that the product of 3 consecutive integers is never a perfect power (i.e., a perfect square, a perfect cube, etc).
- 6. How many integers r in $\{0, 1, \dots, 2^n 1\}$ are there for which there exists an x where $x^2 \equiv r \pmod{2^n}$?
- 7. Let n, a, b be positive integers. Prove that $gcd(n^a 1, n^b 1) = n^{gcd(a,b)} 1$.
- 8. A positive integer is written at each integer point in the plane (\mathbb{Z}^2), in such a way that each of these numbers is the arithmetic mean of its four neighbors. Prove that all of the numbers are equal.
- 9. A triangular number is a positive integer of the form n(n+1)/2. Prove that m is the sum of two triangular numbers if and only if 4m + 1 is the sum of two squares.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.