Putnam $\Sigma.8$

Po-Shen Loh

15 October 2017

1 Problems

Putnam 2005/B4. For positive integers m and n, let f(m,n) denote the number of n-tuples (x_1, x_2, \ldots, x_n) of integers such that $|x_1| + |x_2| + \cdots + |x_n| \le m$. Show that f(m,n) = f(n,m).

Putnam 2005/B5. Let $P(x_1, ..., x_n)$ denote a polynomial with real coefficients in the variables $x_1, ..., x_n$, and suppose that

$$\left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right) P(x_1, \dots, x_n) = 0 \quad \text{(identically)}$$

and that

$$x_1^2 + \dots + x_n^2$$
 divides $P(x_1, \dots, x_n)$.

Show that P = 0 identically.

Putnam 2005/B6. Let S_n denote the set of all permutations of the numbers 1, 2, ..., n. For $\pi \in S_n$, let $\sigma(\pi) = 1$ if π is an even permutation and $\sigma(\pi) = -1$ if π is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of π . Show that

$$\sum_{\pi \in S_{-}} \frac{\sigma(\pi)}{\nu(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}.$$