Putnam E.6

Po-Shen Loh

4 October 2017

1 Problems

- **Putnam 2008/A1.** Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that f(x, y) + f(y, z) + f(z, x) = 0 for all real numbers x, y, and z. Prove that there exists a function $g : \mathbb{R} \to \mathbb{R}$ such that f(x, y) = g(x) g(y) for all real numbers x and y.
- **Putnam 2008/A2.** Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?
- **Putnam 2008/A3.** Start with a finite sequence a_1, a_2, \ldots, a_n of positive integers. If possible, choose two indices j < k such that a_j does not divide a_k , and replace a_j and a_k by $gcd(a_j, a_k)$ and $lcm(a_j, a_k)$, respectively. Prove that if this process is repeated, it must eventually stop and the final sequence does not depend on the choices made.