Putnam $\Sigma.12$

Po-Shen Loh

13 November 2016

1 Problems

Putnam 1993/A4. Let x_1, x_2, \ldots, x_{19} be positive integers each of which is less than or equal to 93. Let y_1, y_2, \ldots, y_{93} be positive integers each of which is less than or equal to 19. Prove that there exists a (nonempty) sum of some x_i 's equal to a sum of some y_j 's.

Putnam 1993/A5. Show that

$$\int_{-100}^{-10} \left(\frac{x^2 - x}{x^3 - 3x + 1}\right)^2 dx + \int_{\frac{1}{101}}^{\frac{1}{11}} \left(\frac{x^2 - x}{x^3 - 3x + 1}\right)^2 dx + \int_{\frac{101}{100}}^{\frac{11}{10}} \left(\frac{x^2 - x}{x^3 - 3x + 1}\right)^2 dx$$

is a rational number.

Putnam 1993/A6. The infinite sequence of 2's and 3's

 $2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, \dots$

has the property that, if one forms a second sequence that records the number of 3's between successive 2's, the result is identical to the given sequence. Show that there exists a real number r such that, for any n, the nth term of the sequence is 2 if and only if $n = 1 + \lfloor rm \rfloor$ for some nonnegative integer m. (Note: $\lfloor x \rfloor$ denotes the largest integer less than or equal to x.)