Putnam $\Sigma.11$

Po-Shen Loh

6 November 2016

1 Problems

Putnam 1994/B4. For $n \ge 1$, let d_n be the greatest common divisor of the entries of $A^n - I$, where

$$A = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \quad \text{and} \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Show that $\lim_{n\to\infty} d_n = \infty$.

Putnam 1994/B5. For any real number α , define the function $f_{\alpha}(x) = \lfloor \alpha x \rfloor$. Let *n* be a positive integer. Show that there exists an α such that for $1 \le k \le n$,

$$f_{\alpha}^{k}(n^{2}) = n^{2} - k = f_{\alpha^{k}}(n^{2}).$$

Putnam 1994/B6. For any integer n, set

$$n_a = 101a - 100 \cdot 2^a.$$

Show that for $0 \le a, b, c, d \le 99, n_a + n_b \equiv n_c + n_d \pmod{10100}$ implies $\{a, b\} = \{c, d\}$.