Putnam $\Sigma.10$

Po-Shen Loh

30 October 2016

1 Problems

- **Putnam 1994/A4.** Let A and B be 2×2 matrices with integer entries such that A, A+B, A+2B, A+3B, and A+4B are all invertible matrices whose inverses have integer entries. Show that A+5B is invertible and that its inverse has integer entries.
- Alternative: Putnam 1940/B6 (if you've seen A4 before). The $n \times n$ matrix (m_{ij}) is defined as $m_{ij} = a_i a_j$ for $i \neq j$, and $a_i^2 + k$ for i = j. Show that $det(m_{ij})$ is divisible by k^{n-1} and find its other factor.
- **Putnam 1994/A5.** Let $(r_n)_{n\geq 0}$ be a sequence of positive real numbers such that $\lim_{n\to\infty} r_n = 0$. Let S be the set of numbers representable as a sum

$$r_{i_1} + r_{i_2} + \cdots + r_{i_{1994}},$$

with $i_1 < i_2 < \cdots < i_{1994}$. Show that every nonempty interval (a, b) contains a nonempty subinterval (c, d) that does not intersect S.

Putnam 1994/A6. Let f_1, \ldots, f_{10} be bijections of the set of integers such that for each integer n, there is some composition $f_{i_1} \circ f_{i_2} \circ \cdots \circ f_{i_m}$ of these functions (allowing repetitions) which maps 0 to n. Consider the set of 1024 functions

$$\mathcal{F} = \{ f_1^{e_1} \circ f_2^{e_2} \circ \dots \circ f_{10}^{e_{10}} \},\$$

 $e_i = 0$ or 1 for $1 \le i \le 10$. $(f_i^0$ is the identity function and $f_i^1 = f_i$.) Show that if A is any nonempty finite set of integers, then at most 512 of the functions in \mathcal{F} map A to itself.