Putnam $\Sigma.6$

Po-Shen Loh

2 October 2016

1 Problems

Putnam 1996/B4. For any square matrix A, we can define $\sin A$ by the usual power series:

$$\sin A = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} A^{2n+1}.$$

Prove or disprove: there exists a 2×2 matrix A with real entries such that

$$\sin A = \left(\begin{array}{cc} 1 & 1996\\ 0 & 1 \end{array}\right).$$

- **Putnam 1996/B5.** Given a finite string S of symbols X and O, we write $\Delta(S)$ for the number of X's in S minus the number of O's. For example, $\Delta(XOOXOOX) = -1$. We call a string S balanced if every substring T of (consecutive symbols of) S has $-2 \leq \Delta(T) \leq 2$. Thus, XOOXOOX is not balanced, since it contains the substring OOXOO. Find, with proof, the number of balanced strings of length n.
- **Putnam 1996/B6.** Let $(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)$ be the vertices of a convex polygon which contains the origin in its interior. Prove that there exist positive real numbers x and y such that

$$(a_1, b_1)x^{a_1}y^{b_1} + (a_2, b_2)x^{a_2}y^{b_2} + \dots + (a_n, b_n)x^{a_n}y^{b_n} = (0, 0).$$