Putnam $\Sigma.4$

Po-Shen Loh

18 September 2016

1 Problems

Putnam 1997/B4. Let $a_{m,n}$ denote the coefficient of x^n in the expansion of $(1+x+x^2)^m$. Prove that for all integers $k \geq 0$,

$$0 \le \sum_{i=0}^{\lfloor \frac{2k}{3} \rfloor} (-1)^i a_{k-i,i} \le 1.$$

Putnam 1997/B5. Prove that for $n \geq 2$,

$$n \text{ terms} \qquad n - 1 \text{ terms}$$

$$2^{2^{\dots^2}} \equiv 2^{2^{\dots^2}} \pmod{n}.$$

Putnam 1997/B6. The dissection of the 3–4–5 triangle into four congruent right triangles similar to the original has diameter 5/2. (The diameter of a dissection is the least upper bound of the distances between pairs of points belonging to the same part.) Find the least diameter of a dissection of this triangle into four parts.