Putnam E.14

Po-Shen Loh

30 Nov 2016

1 Problems

Putnam 2009/B1. Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

$$\frac{10}{9} = \frac{2! \cdot 5!}{3! \cdot 3! \cdot 3!}$$

- **Putnam 2009/B2.** A game involves jumping to the right on the real number line. If a and b are real numbers and b > a, the cost of jumping from a to b is $b^3 ab^2$. For what real numbers c can one travel from 0 to 1 in a finite number of jumps with total cost exactly c?
- **Putnam 2009/B3.** Call a subset S of $\{1, 2, ..., n\}$ mediocre if it has the following property: Whenever a and b are elements of S whose average is an integer, that average is also an element of S. Let A(n) be the number of mediocre subsets of $\{1, 2, ..., n\}$. [For instance, every subset of $\{1, 2, 3\}$ except $\{1, 3\}$ is mediocre, so A(3) = 7.] Find all positive integers n such that A(n + 2) 2A(n + 1) + A(n) = 1.