Putnam $\Sigma.2$

Po-Shen Loh

31 August 2014

1 Problems

Putnam 1984/A4. A convex pentagon inscribed in a circle radius 1 has two perpendicular diagonals which intersect inside the pentagon. What is the maximum area the pentagon can have?

Putnam 1984/A5. Let V be the pyramidal region $x, y, z \ge 0, x + y + z \le 1$. Evaluate

$$\int_{V} xy^{9}z^{8}(1-x-y-z)^{4}dxdydz.$$

Putnam 1984/A6. Let f(n) be the last non-zero digit in the decimal representation of n!. Show that for distinct integers $a_i \geq 0$, $f(5^{a_1} + 5^{a_2} + \cdots + 5^{a_r})$ depends only on the sum $a_1 + \cdots + a_r = a$. Write the value as g(a). Find the smallest period for g, or show that it is not periodic.