13. Analysis

Po-Shen Loh

CMU Putnam Seminar, Fall 2014

1 Strange, but true

- Very not continuous. There is a nowhere continuous function whose absolute value is everywhere continuous.
- Very not bounded. There is a function that is everywhere finite but everywhere locally unbounded.
- Periodicity. There is a nonconstant periodic function which has no smallest positive period.
- **Inverse continuity.** There is a function which is continuous and injective from an interval to a range which is not necessarily a subset of \mathbb{R} , but whose inverse is not continuous.
- **Continuity and rationals.** There is a function which is continuous at every irrational point and discontinuous at every rational point.
- Monotonicity. There is a continuous function which is nowhere monotonic.
- **Hydra.** There is a function with domain [0,1] whose range for every nondegenerate subinterval of [0,1] is [0,1].
- **Linearity.** There is a discontinuous linear function (function which satisfies f(x+y) = f(x) + f(y) for every $x, y \in \mathbb{R}$).
- **Joint continuity.** There is a function $f : \mathbb{R}^2 \to \mathbb{R}$ which is not continuous, but has the properties that (i) for every $x_0 \in \mathbb{R}$, the function $f_{x_0} : \mathbb{R} \to \mathbb{R}$ defined by $f_{x_0}(t) = f(x_0, t)$ is continuous, and (ii) for every $y_0 \in \mathbb{R}$, the function $f_{y_0} : \mathbb{R} \to \mathbb{R}$ defined by $f_{y_0}(t) = f(t, y_0)$ is continuous.

2 More normal problems

- 1. Let X be the unit square $[0,1] \times [0,1]$, and let f be a continuous function from X to \mathbb{R} . Suppose that $\int_Y f(x,y) dx dy = 0$ for all squares Y for which (i) $Y \subset X$, (ii) the sides of Y are parallel to those of X, and (iii) at least one of Y's sides is contained in the boundary of X. Is it true that f(x,y) = 0 for all $(x,y) \in X$?
- 2. Given that f(x) increases from 0 to 1 as x does, prove that the graph of y = f(x) between $0 \le x \le 1$ can be covered by n rectangles with sides parallel to the axes and each having area $1/n^2$.
- 3. Show that $\lim_{x\to\infty} \frac{f(x)}{x^2} = 1$ does not imply $\lim_{x\to\infty} \frac{f'(x)}{2x} = 1$, but it does for convex f.
- 4. Let f(x) be a continuous function which satisfies

$$\lim_{h \to 0^+} \frac{f(x+2h) - f(x+h)}{h} = 0$$

for each x. Prove that f(x) is a constant.

5. Show that $f(x) \in C^1[a, b]$ iff the limit as $h \to 0$ of

$$\frac{f(x+h) - f(x)}{h}$$

exists uniformly on [a, b].

6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a continuous function with the properties that (i) for every $x_0 \in \mathbb{R}$, the function $f_{x_0} : \mathbb{R} \to \mathbb{R}$ defined by $f_{x_0}(t) = f(x_0, t)$ is continuous, and (ii) for every $y_0 \in \mathbb{R}$, the function $f_{y_0} : \mathbb{R} \to \mathbb{R}$ defined by $f_{y_0}(t) = f(t, y_0)$ is continuous. Show that there is a sequence of continuous functions $g_n : \mathbb{R}^2 \to \mathbb{R}$ which tends to f pointwise.

3 Homework

Please write up solutions to two of the statements/problems, to turn in at next week's meeting. One of them may be a problem that we solved in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.