Putnam $\Sigma.14$

Po-Shen Loh

24 November 2012

1 Problems

Putnam 1991/B4. Suppose p is an odd prime. Prove that

$$\sum_{j=0}^{p} \binom{p}{j} \binom{p+j}{j} \equiv 2^{p} + 1 \pmod{p^{2}}.$$

Putnam 1991/B5. Let p be an odd prime and let \mathbb{Z}_p denote (the field of) integers modulo p. How many elements are in the set

$$\{x^2 : x \in \mathbb{Z}_p\} \cap \{y^2 + 1 : y \in \mathbb{Z}_p\}?$$

Putnam 1991/B6. Let a and b be positive numbers. Find the largest number c, in terms of a and b, such that

$$a^x b^{1-x} \le a \frac{\sinh ux}{\sinh u} + b \frac{\sinh u(1-x)}{\sinh u}$$

for all u with $0 < |u| \le c$ and for all x, 0 < x < 1. (Note: $\sinh u = (e^u - e^{-u})/2$.)