Putnam 5.14

Po-Shen Loh

24 November 2012

1 Problems

Putnam 1991/B4. Suppose p is an odd prime. Prove that

$$
\sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{j} \equiv 2^{p}+1 \quad\left(\bmod p^{2}\right)
$$

Putnam 1991/B5. Let p be an odd prime and let \mathbb{Z}_{p} denote (the field of) integers modulo p. How many elements are in the set

$$
\left\{x^{2}: x \in \mathbb{Z}_{p}\right\} \cap\left\{y^{2}+1: y \in \mathbb{Z}_{p}\right\} ?
$$

Putnam 1991/B6. Let a and b be positive numbers. Find the largest number c, in terms of a and b, such that

$$
a^{x} b^{1-x} \leq a \frac{\sinh u x}{\sinh u}+b \frac{\sinh u(1-x)}{\sinh u}
$$

for all u with $0<|u| \leq c$ and for all $x, 0<x<1$. (Note: $\sinh u=\left(e^{u}-e^{-u}\right) / 2$.)

