Putnam 5.13

Po-Shen Loh

17 November 2012

1 Problems

Putnam 1991/A4. Does there exist an infinite sequence of closed discs $D_{1}, D_{2}, D_{3}, \ldots$ in the plane, with centers $c_{1}, c_{2}, c_{3}, \ldots$, respectively, such that

1. the c_{i} have no limit point in the finite plane,
2. the sum of the areas of the D_{i} is finite, and
3. every line in the plane intersects at least one of the D_{i} ?

Putnam 1991/A5. Find the maximum value of

$$
\int_{0}^{y} \sqrt{x^{4}+\left(y-y^{2}\right)^{2}} d x
$$

for $0 \leq y \leq 1$.
Putnam 1991/A6. Let $A(n)$ denote the number of sums of positive integers

$$
a_{1}+a_{2}+\cdots+a_{r}
$$

which add up to n with

$$
\begin{gathered}
a_{1}>a_{2}+a_{3}, a_{2}>a_{3}+a_{4}, \ldots, \\
a_{r-2}>a_{r-1}+a_{r}, a_{r-1}>a_{r} .
\end{gathered}
$$

Let $B(n)$ denote the number of $b_{1}+b_{2}+\cdots+b_{s}$ which add up to n, with

1. $b_{1} \geq b_{2} \geq \cdots \geq b_{s}$,
2. each b_{i} is in the sequence $1,2,4, \ldots, g_{j}, \ldots$ defined by $g_{1}=1, g_{2}=2$, and $g_{j}=g_{j-1}+g_{j-2}+1$, and
3. if $b_{1}=g_{k}$ then every element in $\left\{1,2,4, \ldots, g_{k}\right\}$ appears at least once as a b_{i}.

Prove that $A(n)=B(n)$ for each $n \geq 1$.
(For example, $A(7)=5$ because the relevant sums are $7,6+1,5+2,4+3,4+2+1$, and $B(7)=5$ because the relevant sums are $4+2+1,2+2+2+1,2+2+1+1+1,2+1+1+1+1+1,1+1+1+1+1+1+1$.)

