Putnam 5.12

Po-Shen Loh

10 November 2012

1 Problems

Putnam 1992/B4. Let $p(x)$ be a nonzero polynomial of degree less than 1992 having no nonconstant factor in common with $x^{3}-x$. Let

$$
\frac{d^{1992}}{d x^{1992}}\left(\frac{p(x)}{x^{3}-x}\right)=\frac{f(x)}{g(x)}
$$

for polynomials $f(x)$ and $g(x)$. Find the smallest possible degree of $f(x)$.
Putnam 1992/B5. Let D_{n} denote the value of the $(n-1) \times(n-1)$ determinant

$$
\left[\begin{array}{cccccc}
3 & 1 & 1 & 1 & \cdots & 1 \\
1 & 4 & 1 & 1 & \cdots & 1 \\
1 & 1 & 5 & 1 & \cdots & 1 \\
1 & 1 & 1 & 6 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 1 & \cdots & n+1
\end{array}\right]
$$

Is the set $\left\{\frac{D_{n}}{n!}\right\}_{n \geq 2}$ bounded?
Putnam 1992/B6. Let \mathcal{M} be a set of real $n \times n$ matrices such that
(i) $I \in \mathcal{M}$, where I is the $n \times n$ identity matrix;
(ii) if $A \in \mathcal{M}$ and $B \in \mathcal{M}$, then either $A B \in \mathcal{M}$ or $-A B \in \mathcal{M}$, but not both;
(iii) if $A \in \mathcal{M}$ and $B \in \mathcal{M}$, then either $A B=B A$ or $A B=-B A$;
(iv) if $A \in \mathcal{M}$ and $A \neq I$, there is at least one $B \in \mathcal{M}$ such that $A B=-B A$.

Prove that \mathcal{M} contains at most n^{2} matrices.

