Putnam 5.8

Po-Shen Loh

14 October 2012

1 Problems

Putnam 1993/A4. Let $x_{1}, x_{2}, \ldots, x_{19}$ be positive integers each of which is less than or equal to 93 . Let $y_{1}, y_{2}, \ldots, y_{93}$ be positive integers each of which is less than or equal to 19 . Prove that there exists a (nonempty) sum of some x_{i} 's equal to a sum of some y_{j} 's.

Putnam 1993/A5. Show that

$$
\int_{-100}^{-10}\left(\frac{x^{2}-x}{x^{3}-3 x+1}\right)^{2} d x+\int_{\frac{1}{101}}^{\frac{1}{11}}\left(\frac{x^{2}-x}{x^{3}-3 x+1}\right)^{2} d x+\int_{\frac{101}{100}}^{\frac{11}{10}}\left(\frac{x^{2}-x}{x^{3}-3 x+1}\right)^{2} d x
$$

is a rational number.
Putnam 1993/A6. The infinite sequence of 2's and 3's

$$
2,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2, \ldots
$$

has the property that, if one forms a second sequence that records the number of 3's between successive 2's, the result is identical to the given sequence. Show that there exists a real number r such that, for any n, the nth term of the sequence is 2 if and only if $n=1+\lfloor r m\rfloor$ for some nonnegative integer m. (Note: $\lfloor x\rfloor$ denotes the largest integer less than or equal to x.)

