Putnam 5.7

Po-Shen Loh

7 October 2012

1 Problems

Putnam 1994/B4. For $n \geq 1$, let d_{n} be the greatest common divisor of the entries of $A^{n}-I$, where

$$
A=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right) \quad \text { and } \quad I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Show that $\lim _{n \rightarrow \infty} d_{n}=\infty$.
Putnam 1994/B5. For any real number α, define the function $f_{\alpha}(x)=\lfloor\alpha x\rfloor$. Let n be a positive integer. Show that there exists an α such that for $1 \leq k \leq n$,

$$
f_{\alpha}^{k}\left(n^{2}\right)=n^{2}-k=f_{\alpha^{k}}\left(n^{2}\right)
$$

Putnam 1994/B6. For any integer n, set

$$
n_{a}=101 a-100 \cdot 2^{a}
$$

Show that for $0 \leq a, b, c, d \leq 99, n_{a}+n_{b} \equiv n_{c}+n_{d}(\bmod 10100)$ implies $\{a, b\}=\{c, d\}$.

