Putnam 5.6

Po-Shen Loh

30 September 2012

1 Problems

Putnam 1994/A4. Let A and B be 2×2 matrices with integer entries such that $A, A+B, A+2 B, A+3 B$, and $A+4 B$ are all invertible matrices whose inverses have integer entries. Show that $A+5 B$ is invertible and that its inverse has integer entries.

Putnam 1994/A5. Let $\left(r_{n}\right)_{n \geq 0}$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} r_{n}=0$. Let S be the set of numbers representable as a sum

$$
r_{i_{1}}+r_{i_{2}}+\cdots+r_{i_{1994}}
$$

with $i_{1}<i_{2}<\cdots<i_{1994}$. Show that every nonempty interval (a, b) contains a nonempty subinterval (c, d) that does not intersect S.

Putnam 1994/A6. Let f_{1}, \ldots, f_{10} be bijections of the set of integers such that for each integer n, there is some composition $f_{i_{1}} \circ f_{i_{2}} \circ \cdots \circ f_{i_{m}}$ of these functions (allowing repetitions) which maps 0 to n. Consider the set of 1024 functions

$$
\mathcal{F}=\left\{f_{1}^{e_{1}} \circ f_{2}^{e_{2}} \circ \cdots \circ f_{10}^{e_{10}}\right\}
$$

$e_{i}=0$ or 1 for $1 \leq i \leq 10$. (f_{i}^{0} is the identity function and $f_{i}^{1}=f_{i}$.) Show that if A is any nonempty finite set of integers, then at most 512 of the functions in \mathcal{F} map A to itself.

