Putnam 5.3

Po-Shen Loh

9 September 2012

1 Problems

Putnam 1996/B4. For any square matrix A, we can define $\sin A$ by the usual power series:

$$
\sin A=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} A^{2 n+1}
$$

Prove or disprove: there exists a 2×2 matrix A with real entries such that

$$
\sin A=\left(\begin{array}{cc}
1 & 1996 \\
0 & 1
\end{array}\right)
$$

Putnam 1996/B5. Given a finite string S of symbols X and O, we write $\Delta(S)$ for the number of X 's in S minus the number of O 's. For example, $\Delta(X O O X O O X)=-1$. We call a string S balanced if every substring T of (consecutive symbols of) S has $-2 \leq \Delta(T) \leq 2$. Thus, XOOXOOX is not balanced, since it contains the substring $O O X O O$. Find, with proof, the number of balanced strings of length n.

Putnam 1996/B6. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$ be the vertices of a convex polygon which contains the origin in its interior. Prove that there exist positive real numbers x and y such that

$$
\begin{gathered}
\left(a_{1}, b_{1}\right) x^{a_{1}} y^{b_{1}}+\left(a_{2}, b_{2}\right) x^{a_{2}} y^{b_{2}}+\cdots \\
\quad+\left(a_{n}, b_{n}\right) x^{a_{n}} y^{b_{n}}=(0,0)
\end{gathered}
$$

