Putnam E.12

Po-Shen Loh

14 Nov 2012

1 Problems

- **Putnam 1982/B1.** *ABC* is an arbitrary triangle, and M is the midpoint of *BC*. How many pieces are needed to dissect *AMB* into triangles which can be reassembled to give *AMC*?
- **Putnam 1982/B2.** Let a(r) be the number of lattice points inside the circle centered at the origin with radius r. Let $k = 1 + e^{-1} + e^{-4} + \dots + e^{-n^2} + \dots$. Express

$$\int_U a(\sqrt{x^2+y^2})e^{-(x^2+y^2)}dxdy$$

as a polynomial in k, where U represents the entire plane.

Putnam 1982/B3. Let p_n be the probability that two numbers selected independently and randomly from $\{1, 2, 3, ..., n\}$ have a sum which is a square. Find $\lim_{n\to\infty} p_n \sqrt{n}$.