Putnam E.6

Po-Shen Loh

2 Oct 2012

1 Problems

Putnam 1985/B1. Let k be the smallest positive integer with the following property: there are distinct integers m_1 , m_2 , m_3 , m_4 , and m_5 such that the polynomial

$$p(x) = (x - m_1)(x - m_2)(x - m_3)(x - m_4)(x - m_5)$$

has exactly k nonzero coefficients. Find, with proof, a set of integers m_1 , m_2 , m_3 , m_4 , and m_5 for which this minimum k is achieved.

Putnam 1985/B2. Define polynomials $f_n(x)$ for $n \ge 0$ by $f_0(x) = 1$, $f_n(0) = 0$ for $n \ge 1$, and

$$\frac{d}{dx}(f_{n+1}(x)) = (n+1)f_n(x+1)$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

Putnam 1985/B3. Let

be a doubly infinite array of positive integers, and suppose each positive integer appears exactly eight times in the array. Prove that $a_{m,n} > mn$ for some pair of positive integers (m,n).